
Fundamentals of type inference systems

Fritz Henglein
DIKU, University of Copenhagen

henglein@diku.dk

February 1, 1991; revised January 31, 1994; updated August 9, 2009

1 Introduction

These notes give a compact overview of established core type systems and
of their fundamental properties. We emphasize the use and application of
type systems in programming languages, but also mention their role in logic.
Proofs are omitted, but references to relevant sources in the literature are
usually given.

1.1 What is a “type”?

There are many examples of types in programming languages:

• Primitive types: int, float, bool

• Compound types: products (records), sums (disjoint unions), lists,
arrays

• Recursively definable types, such as tree data types

• Function types, e.g. int →int

• Parametric polymorphic types

• Abstract types, e.g. Java interfaces

Loosely speaking a type is a description of a collection of related values.

• A type has syntax (“description”): It denotes a collection.

• A type has elements (“collection”): It makes sense to talk about ele-
ments of a type; in particular, it may have zero, one or many elements

1

• A type’s elements have common properties (“related”): Users of a
type can rely on each element having some common properties—an
interface— without having to know the identity of particular elements.

Types incorporate multiple aspects:

• Type as a set of values: This view focuses on how values are con-
structed to be elements of a type; e.g. constructing the natural num-
bers from 0 and the successor function;

• Type as a an interface: This view focuses on how values can be used
(“deconstructed”) by a client; e.g. testing whether a number is 0 or a
successor and choosing different branches based on that.

These aspects are complementary, with none superseding the other.

• If there is no test or other operation for making computations distin-
guish between 0 from nonzero values we can “implement” the successor
function by just returning 0 (or any other value for that matter).

• If there is no successor function we can statically simplify each test for
0

We can think of a type as a contract between an implementor and a user
of a software component that enforces information hiding with the well-
known trade-off between choosing very concrete or very abstract (highly
encapsulated) interfaces:

• The fewer elements a type has the more common properties they share
that can be exploited by clients, but the fewer alternatives there are
for implementing the type (low degree of information hiding);

• The more elements a type has the fewer common properties they share
that can be exploited by clients, but the more alterantives there are
for implementing the type (high degree of information hiding).

2 What is a type system?

A type system is logical system of rules for inferring valid judgements The
ingredients of a type system for programming languages are:

• expressions e: syntactically well-formed program fragments

• types τ : a language of interfaces (properties) we are interested in

2

• typings (judgments) e : τ and more generally A ` e : τ expressing that
e “expression e has type τ if assumptions A hold”.

• inference rules for deriving valid typings for compound expressions
from their constituent expressions.

3 Soundness

Derivable typing judgements are intended to guarantee some safety property
about program execution, namely that certain errors cannot occur. This is
popularized in the slogan:

Well-typed programs don’t go wrong.

A type system is sound if its rules are such that only typings for safe pro-
grams are derivable. Soundness relates the derivable typings to what hap-
pens during computation and can be considered a core characteristic of a
type system.

3.1 Applications of type systems

• Language-based security: No spoofing or injection attacks possible.
Typing derivations provide efficiently checkable logical certificates of a
program’s safety (“does not go wrong”) property.

• Component-oriented software development: Types express explicit con-
tracts between implementation and client of a software component.
Either one can change without having to notify the other as long as
the type is preserved. This supports software evolution and software
reuse. Parametricity expresses powerful program properties and gives
encapsulation guarantees.

• Type-based program analysis: Types as properties of programs. The
whole derivation, not just the property of the whole program, can
be used for program transformation/novel implementations (e.g. for
pointer analysis, binding-time analysis, dynamic type inference, region
inference, information flow, communication pattern inference). Con-
trol of expressiveness, supported by efficient constraint-solving meth-
ods.

3

4 The descriptive and prescriptive views of typ-
ings

There are different philosophical views (with technical ramifications, mostly
in the model theories of the resulting type theories) we can take of the inter-
action of programs and their properties. They have been termed descriptive
and prescriptive or, respectively, Curry and Church for historical reasons. In
the descriptive view programs and properties are defined independently (typ-
ically by some simple syntactic mechanism such as context-free grammars),
and the typings describe (properties of) programs; in particular, some pro-
grams may not have any properties whatsoever, but are programs nonethe-
less. In the prescriptive view the very notion of program (or expression,
term, etc.) is defined in such a way where their properties (types) pre-
scribe how they may be put together to form new programs. In particular,
programs (in the descriptive sense) with no type are not even considered
programs in the first place, but called something like “pre-programs” (or
pre-terms, pre-expressions, . . .).

4.1 Types in logic

Type systems are used in logic, especially in the proof theory of construc-
tive logics because of the propositions-as-types (and deductions-as-programs)
principle, also called the Curry-Howard isomorphism, since Curry and Howard
were the first ones to notice these correspondences for intuitionistic propo-
sitional logic.

In logic it is most natural to adopt the prescriptive viewpoint as programs
describe deductions and their type corresponds to a theorem. Theorems
are defined in terms of deductions and, in turn, deductions are defined in
terms of what they prove. There is only little interest in considering “pre-
deductions”.

A derivable typing e : p gives not only that p is a theorem, but also
represents an explicit deduction e of p. The type inference system provides
rules for how deductions of theorems can be composed to give deductions
of other theorems. There is usually a reduction relation on deductions cor-
responding to cut-elimination, which one might also call lemma elimination
— replacing uses of a lemma in a deduction by (copies of) the deduction
of the lemma itself. A central property of such type systems is that all
deductions strongly normalize: any reduction sequence is finite (see strong
normalization theorem below). Viewing deductions as programs, and nor-
malization as evaluation this implies that the “programming language” of

4

deductions only contains uniformly terminating programs; i.e., it is not a
general (Turing-complete) programming language.

The correspondences between proof theory and λ-calculus are:

proposition = type
deduction = expression

normalization = reduction
cut elimination = strong normalization

4.2 Types in programming languages

The presence of a general recursion mechanism in programming languages
destroys the propositions-as-types principle: the type (α → α) → α of a
fixed point operator is not a (valid) proposition.

In type inference applied to programming language processing and anal-
ysis the descriptive viewpoint is often natural since programs and properties
are typically defined independently of each other:

Type checking/inference. In type checking the question is whether pro-
grams satisfy the typing rules or not; in particular the notion of “pro-
gram” — the input to this process — is defined independently of the
typing rules.

Program analysis. In program analysis we use types to express properties
of programs (and program parts). Again, what constitutes programs
is defined completely independently of types. Programs for which no
properties can be inferred are not in any sense rejected, as is implicit
in the prescriptive view. Furthermore, we might even apply a program
analysis formulated as a type inference system to a typed language,
where the object language type system and the analysis type system
serve different purposes.

More often than not these viewpoints are interchangeable, however, and have
actually led to more difference in terminology than in anything of substance
— with the exception of models and semantics.

5 Why study core type systems?

Type systems for realistic programming languages can be quite complex.
The principles they follow are fewer, and it is often possible to study them
in a tiny core language.

5

We shall restrict ourselves to the type systems for λ-calculus, the core
of functional languages. This is partially because type systems have histori-
cally evolved for λ-calculus. Type systems that start with a other primitive
notions than functions, such as objects (Theory of Objects) or processes (be-
havioral type systems) or imperative (Hoare logic) exist, but are arguably
less mature.

6 Untyped λ-calculus

6.1 Syntax of expressions

In the (pure) λ-calculus the λ-expressions Λ are:

e ::= x | e′e′′ | λx.e′

where x ranges over an infinite set V of variables and λ binds its variable.

6.2 λ-reduction

Reduction can be viewed both as an operational semantics for the λ-calculus
and as a form of program simplification. It is defined by the following infer-
ence system.

(β) (λx.e)e′ −→β e[e′/x]

(COMP)
e −→ e′

C[e] −→ C[e′]
for any context C

Here, C[. . .] denotes a context; that is, a λ-expression with one hole.1

A normal form is an expression e such that e −→ e′ for no e′. An
expression e is (weakly) normalizing (has a normal form) if e −→∗ e′ for
some normal form e′; i.e., if there is a finite reduction sequence e −→ e1 −→
. . . −→ e′ starting in e and ending in e′. Expression e is strongly normalizing
if there is no infinite reduction sequence starting at e.
Note: There is also η-reduction with the rule

(η) λx.ex −→η e if x 6∈ FV (e)

1In fact, the context could also have an arbitrary number of contexts.

6

In general, a β-rule shows what happens when a value constructor (λ)
meets a deconstructor (C[] = []e); which can be thought of as a computation
step. In contrast, an η-rule, read from right to left, expresses intuitively that
that a type has no other value constructors than given ones; in particular,
it cannot be extended with new ones.

6.3 λ-theory

A λ-theory is a theory of equalities between λ-expressions. These equalities
can be viewed as specifying the (extensional) behavior of λ-expressions. For
any reduction relation −→ we define the equality theory induced by it as
follows.

(α) λx.e = λy.e[y/x]

(INTRO)
e −→ e′

e = e′

(REFL) e = e

(SYMM)
e = e′

e′ = e

(TRANS)
e = e′ e′ = e′′

e = e′′

(COMP)
e = e′

C[e] = C[e′]

So, β-equality e =β e
′ is the equality theory induced by β-reduction.

6.4 λ-models

A (syntactic) λ-model is an applicative structure (D, •) together with a map-
ping [[. . .]] : Λ→ (V → D)→ D such that the following properties hold:

[[x]]ρ = ρ(x)
[[ee′]]ρ = ([[e]]ρ) • ([[e′]]ρ)

[[λx.e]]ρ • d = [[e]](ρ{x : d})
ρ|FV (e) = ρ′|FV (e) ⇒ [[e]]ρ = [[e]]ρ′

Note: e =β e
′ implies [[e]]ρ = [[e′]]ρ for all ρ in any λ-model. The map

[[. . .]] interprets every λ-expression inside an applicative structure; the prop-
erties this applicative structure has to satisfy guarantee that λ-expressions
that are β-equal are interpreted as the same element.

7

7 Simply typed λ-calculus

7.1 Simple types

The (simple) types T are

τ ::= α | τ ′ → τ ′′

where α ranges over an infinite set TV of type variables. In type systems for
actual programming languages there are usually also primitive types such
as bool and integer, and other type constructors such as pair and sum type
constructors and list .

A simple model of types is an applicative structure (D, •) with a map
[[. . .]] : T → (TV → 2D)→ 2D that satisfies the following properties:

[[α]]υ = υ(α)
[[τ → τ ′]]υ = {d ∈ D : (∀d′ ∈ D)d′ ∈ [[τ]]υ ⇒

d • d′ ∈ [[τ ′]]υ}

7.2 Typings

A type environment A is a mapping from variables to types. A typing formula
is a formal statement of the form A ` e : τ where A is a type environment, e
an expression and τ a type. The (derivable) typings are all those (and only
those) typing formulae derivable by the following inference system.

(VAR) A{x : τ} ` x : τ

(ABSTR)
A{x : τ} ` e : τ ′

A ` λx.e : τ → τ ′

(APPL)
A ` e : τ → τ ′ A ` e′ : τ

A ` ee′ : τ ′

(A{x : τ} is the type environment A updated at x to map x to τ .)
A typing ` e : τ is interpreted in a λ-model as a containment statement:

the value denoted by e is contained in the set denoted by τ . More precisely,
for λ-model M = (D, •) we write

A |=M e : τ

if for every ρ, υ such that [[x]]ρ ∈ [[A(x)]]υ for every x in the domain of A we
have [[e]]ρ ∈ [[τ]]υ. If this holds for every λ-model M we write

A |= e : τ.

8

7.3 Syntactic properties of typings

The following lemmas express that

1. type variables really represent “arbitrary types”, and

2. a typing for e depends only on type assumptions for the free variables
of e.

Lemma 7.1 (Substitution Lemma)
If A ` e : τ then S(A) ` e : S(τ) for any substitution S (of types for type

variables).

proof By induction on typing derivations. 2

Lemma 7.2 (Irrelevance of type assumptions for nonfree variables)
If A ` e : τ then A|FV (e) ` e : τ .

proof By induction on typing derivations. 2

A very important general property of type systems is the principal type
property. Its definition varies from type system to type system but always
embodies the following principle: there is a single typing such that all other
typings for the same expression can be derived from this one, the principal
one, by application of “logical” (nonstructural) rules; i.e., by reasoning that
applies to all expressions not just to those with a specific syntactic struc-
ture.2 For the 1st order typed λ-calculus the typings can be derived from
the principal one by substitution.

Theorem 7.3 (Principal types)
For every typable expression e there is a typing A ` e : τ such that for

every typing A′ ` e : τ ′ there is a substitution S such that

• S(A) = A′|FV (e),

• S(τ) = τ ′.

proof (Cur69; Hin69) 2

Remark 7.4 Principal type properties have also been shown for ML typing
(DM82; Dam84), ML typing with polymorphic recursion (Myc84), intersec-
tion type discipline (RDR88), and higher order modules (Tof92). 2

2“Reasoning” in this sense includes both nonstructural type inference rules such as
(GEN) and (INST) further below, and logical rules of inference such as substitution.

9

7.4 Soundness

We say a type system is invariant under (β-)equality (or any other binary
relation) if A ` e : τ ⇔ A ` e′ : τ whenever e =β e

′.
Typings capture aspects both of the syntax and the (reduction) seman-

tics of an expression, but they are generally not invariant under equality.
They do, however, respect β-reduction, in the sense that typings are pre-
served under reduction. Historically this is called the subject reduction prop-
erty. A modern expression is (type) preservation under reduction (evalua-
tion).

Theorem 7.5 (Subject reduction property)
If A ` e : τ and e −→β e

′ then A ` e′ : τ .

proof (CF58; CHS72) 2

The subject expansion property, preservation of typings under β-expansion,
does not hold in general.

Exercise 1 Show that the subject expansion property does not hold in
general; i.e., there exist e, e′, τ such that ` e′ : τ and e −→β e

′, but not e : τ .
2

Exercise 2 (•) Define the linear λ-expressions LΛ as those expressions
where every bound and free variable has exactly one occurrence. Show
that simple typings are invariant under β-equality for LΛ (see below for
definition of type invariance). 2

Note: Viewed as a program analysis the subject reduction property ex-
presses that the program analysis does not “lose” properties under program
“simplification”. (This is a stronger requirement on a program analysis than
just stipulating soundness.)

Remark: The subject reduction property holds for all established type
systems and can be considered a fundamental characteristic and necessary
property of type inference systems.

7.5 Completeness

The typing rules are logically sound, but not complete w.r.t. the interpre-
tation of typings. This is to say that whenever A ` e : τ then we have
A |= e : τ , but the converse does not generally hold. This follows (how?)
immediately from the fact that typings are not invariant under β-equality.

10

The “smallest” possible extension of the type system to make typings in-
variant, however, is complete.

(EQUAL)
A ` e : τ e =β e

′

A ` e′ : τ

Theorem 7.6 (Soundness and completeness)
A ` e : τ (with rule EQUAL) if and only if A |= e : τ .

proof (Hin83) 2

Remark 7.7 This soundness and completeness result has also been ex-
tended to subtypings (Mit91). 2

8 Predicative (ML-style) parametric polymorphism

8.1 Type schemes

Type schemes are generated by

σ ::= τ | ∀α.σ,

where τ ranges over simple types.
They are interpreted as intersections in an applicative structure (D, •):

[[∀α.σ]]υ =
⋂

D′⊆D
[[σ]](υ{α : D′}).

They give rise to two (nonstructural) rules:

(GEN) A ` e : σ
A ` e : ∀α.σ

if α not free in A

(INST)
A ` e : ∀α.σ
A ` e : σ[τ/α]

The generalization rule, (GEN), shows how type schemes can be inferred:
by abstracting over type variables that do not occur in the assumptions.
The instantiation rule, (INST), shows how type schemes can be used: by
instantiating the quantified type variable with an arbitrary type. Note,
however, that the type substituted must be a simple type, not a type scheme.
Since different (simple) types can be given to different occurrences of a
variable this is called a polymorphic typing discipline.

11

8.2 Nonrecursive definitions

We extend expressions with (nonrecursive) let-expressions,

e ::= . . . | let x = e′ in e′′.

Their reduction semantics is given by

let x = e′ in e′′ −→let e′′[e′/x] .

These are nonrecursive definitions together with a scope (the expression e′′)
where they may be used.

We extend the simply typed λ-calculus with the rule

(LET) A ` e′ : σ′ A{x : σ′} ` e : σ
A ` let x = e′ in e : σ

where σ, σ′ range over type schemes. Note that the let-bound variable x
may have a type scheme associated with it, whereas λ-bound variables are
always bound to simple types.

The polymorphic typing rule (LET) is very powerful in that it is invariant
under −→let .

Theorem 8.1 (Type invariance under let -reduction)
A ` let x = e′ in e : σ if and only if A ` e[e′/x] : σ and A ` e′ : τ ′ for

some τ ′.

proof (Dam84) 2

Exercise 3 Is this theorem still correct if we drop the phrase “and A ` e′ :
τ ′ for some τ ′”? 2

Expressions are strongly normalizing under let -reduction (with no β-
reduction steps!). This theorem suggests a simple algorithm for type check-
ing an expression e: let -reduce e until it contains no more let-expressions.
The resulting expression is simply typable if and only if e is typable with
the (LET) rule.

12

Exercise 4 The principal type property for core ML (the simply typed
λ-calculus with polymorphic let-expressions) can be stated as follows: For
every e typable under type environment A there exists a principal type
A ` e : σ such that every other typing A ` e : σ′ can be derived from the
principal one by application of the typing rules (GEN) and (INST) alone.
Use this property to prove the right-to-left implication of Theorem 8.1. 2

8.3 Recursive definitions

We extend expressions with recursive definitions (fixed points),

e ::= . . . | fix f.e′.

Their reduction semantics is given by

fix f.e′ −→fix e′[fix f.e′/f]

An expression fix f.e′ represents the value defined by the (recursive) defi-
nition f = e′ (note that e′ can contain occurrences of f). The use of f is
suggestive of functions being mostly recursively defined; e.g. f = λx.if x =
0 then 1 else f(x− 1).

We extend the typing rules of the simply typed λ-calculus (and let-
expressions) with the rule

(FIX-P)
A{x : σ} ` e′ : σ
A ` fix x.e′ : σ

This polymorphic rule, (FIX-P), is invariant under fix -reduction.

Theorem 8.2 (Type invariance under fix -reduction)
A ` fix x.e′ : σ if and only if A ` e′[fix x.e′/x] : σ.

Exercise 5 (••) Prove this theorem. 2

Note: ML (as well as other languages, such as Miranda and Haskell)
employs the polymorphic typing rule (LET) for nonrecursive definitions,
but uses a monomorphic typing rule for recursive definitions:

(FIX-M)
A{x : τ} ` e′ : τ
A ` fix x.e′ : τ

where τ must be a simple type.

Exercise 6 Show there is an expression e that is typable with polymorphic
recursion (FIX-P), but untypable with monomorphic recursion (FIX-M). 2

13

9 System F: Impredicative parametric polymor-
phism

The polymorphic typing systems above are called impredicative because
there is a hierarchy of type expressions (simple types, type schemes) where
type expressions higher up in the hierarchy may be quantified only over type
expressions strictly below them. For instance, rule (INST) requires that
the quantified type variables in a type scheme are instantiated to simple
types, but not to type schemes. In System F (also called Girard/Reynolds
Calculus, 2nd order λ-calculus, polymorphic λ-calculus) this restriction is
dropped. The types are defined by

τ ::= α | τ ′ → τ ′′ | ∀α.τ ′

and the type inference system consists of the following rules:

(VAR) A{x : τ} ` x : τ

(GEN) A ` e : τ
A ` e : ∀α.τ

if α not free in A

(INST)
A ` e : ∀α.τ
A ` e : τ [τ ′/α]

(ABSTR)
A{x : τ} ` e : τ ′

A ` λx.e : τ → τ ′

(APPL)
A ` e : τ → τ ′ A ` e′ : τ

A ` ee′ : τ ′

Exercise 7 Consider the expression I ′ = (λy.yy)(λx.x). Show that I ′ is
not typable in the simply typed λ-calculus, but that it is typable in F2. (•)
Show that if we translate every let-expression letx = e′ ine by (λx.e)e′ then
the translation of every ML typable expression is F2-typable. 2

9.1 Parametricity

We can think of a type as a subset of the universe of values. A type thus acts
as a unary predicate: int(v) holds if v satisfies being an integer. A function
f of type int → real then guarantees to map each value that satisfies the
int-predicate to a value that satisfies the real-predicate if it terminates at
all. We can express this as

∀v.int(v)⇒ real(f(v)).

14

(Note how the function arrow is interpreted as an implication.)
Polymorphic types can be interpreted in the same fashion. Assume f

has type ∀α.α→ α. As above, from the (INST) rule we can conclude that

∀v.α(v)⇒ α(f(v))

holds for each instantion of α as a type (int, bool, etc.). But an even stronger
interpretation is possible: We can instantiate α with any subset (predicate)
of the value universe, whether or not denotable by a type:

∀2P.∀v.Pα(v)⇒ Pα(f(v)).

Instantiating with singleton set {v} we obtain that f maps v to v. Since
v can be chosen arbitrarily we can conclude that f must be the identity
function from its type alone!

A more powerful interpretation yet of a typing is where we allow binary
predicates (or n-ary) predicates (relations), not just unary ones.

If a language admits an interpretation of typings as “free theorems”
(Wad89) similar to the one above we call it parametric. In a parametric
language the presence of a universally quantified type variable intuitively
conveys a very strong guarantee: A (part of a) value passed to a parametric
polymorphic function in the position of a type variable is guaranteed only
to be copied and moved around, but never inspected in the function.

Theorem 9.1 System F is parametric.

proof (Rey83) 2

9.2 Strong normalization

A property of central importance in logic and also of great relevance in pro-
gramming language theory is that only uniformly terminating λ-expressions
are typable.

Theorem 9.2 (Strong Normalization)
If A ` e : τ then e is strongly normalizing.

proof (Gir71; GLT89) 2

Note: Call-by-value reduction (innermost redex first) or any other re-
duction strategy may be applied to typable expressions without fixed point
operators, even when (sub)expressions are nonstrict!

15

Exercise 8 A fixed point operator is a λ-expression F that satisfies fe =β

e(fe). Use the strong normalization theorem to show that no fixed point
operator that actually satisfies the stronger property fe −→β e(fe) is simply
typable. (•) Strengthen your proof to show that no (arbitrary) fixed point
operator is simply typable. 2

10 Subtyping

A type containment is a formula of the form τ ≤ τ ′. Type containments are
reflexive, transitive and compatible. To express this we add the following
inference rules to the simply typed λ-calculus.

(REFL) τ ≤ τ

(TRANS)
τ ≤ τ ′ τ ′ ≤ τ ′′

τ ≤ τ ′′

(ARROW-COMP)
τd ≤ τ ′d τr ≤ τ ′r
τ ′d → τr ≤ τd → τ ′r

(COERCE)
A ` e : τ τ ≤ τ ′

A ` e : τ ′

We write the subtyping C,A ` e : τ if A ` e : τ is derivable from the
type containments C.

Exercise 9 (•) Replace the rule (ARROW-COMP) by the rule

A ` λx.ex : τ
A ` e : τ

x 6∈ FV (e) .

Is every subtyping C,A ` e : τ derivable in the original subtyping system
(simply typed λ-calculus together with the above four subtyping rules) also
derivable in the changed type system? Is the converse also true; i.e., is every
subtyping derivable in the changed type system derivable in the original type
system? 2

There are two basic interpretations of a type containment τ ≤ τ ′:

1. (subset interpretation) the set denoted by τ is contained in the set
denoted by τ ′;

2. (coercion interpretation) there is a canonical (unique) mapping (coer-
cion) from τ to τ ′.

16

10.1 Atomic subtyping

In atomic subtyping the types in all given type containments are atomic; that
is, primitive types such as integer, real, bool, etc. For example, integer ≤ real
is an atomic type containment.

10.2 Record subtyping

In record (sub)typing we have record types

τ ::= . . . | {x1 : τ1, . . . , xk : τk}

and the following typing and subtyping rules.

(REC-DEF)
e1 : τ1, . . . , ek : τk

{x1 = e1, . . . , xk = ek} : {x1 : τ1, . . . , xk : τk}

(REC-SEL)
e : {x1 : τ1, . . . , xk : τk}

e.xi : τi

(REC-SUB) {x1 : τ1, . . . , xk : τk} ≤ {xi1 : τi1 , . . . , xil : τil}

(REC-COMP)
τ1 ≤ τ ′1 . . . τk ≤ τ ′k

{x1 : τ1, . . . , xk : τk} ≤ {x1 : τ ′1 . . . xk : τ ′k}

In the rule (REC-SUB) the indices i1, . . . , il are pairwise distinct and form
a subset of 1 . . . k. It expresses that every record can be considered a record
with fewer fields, simply by ignoring some fields.

10.3 Subtyping with bottom type

Type ⊥ (“bottom”) models the empty type that no terminating expressions
belong to. It has the rule

(BOT) ⊥ ≤ τ

but no introduction rule; that is, there is no rule that “introduces” expres-
sions of type ⊥.
Note: This type can be used in strictness analysis: if ` e : ⊥ → ⊥ then
e is an expression that when given a nonterminating expression returns a
nonterminating expression (KM89).

17

10.4 Subtyping with top type

Type > (“top”) models the universal type: all expressions have this type.
Its only rule is

(TOP) τ ≤ >

Together with rule (COERCE) this rule implies that every typable expres-
sion e has type >.
Note: This type can be used in binding-time analysis and partial type
discipline: in the former > is the (compile-time) type of expressions that
are evaluated at run-time (not already at compile-time) (Gom91), and in
the latter > is the type of all tagged objects (Tha88).

11 Complexity of type inference

How difficult is it to decide whether an expression e is typable in these type
systems? Here are a few results.

Theorem 11.1 (Complexity of simple type inference)
There is a linear-time algorithm for deciding whether an expression is

simply typable. Furthermore, every polynomial-time decidable problem can
be reduced to simple typability in logarithmic space. In other words: simple
typability is P -complete.

proof Linear-time reduction of type inference to unification (Wan87),
linear-time algorithm for unification (PW78); log-space reduction of type in-
ference to unification (folk theorem), P -completeness of unification (DKM84)
2

Theorem 11.2 (Complexity of ML type inference)
ML typability (typability with polymorphic definitions) is DEXPTIME-

complete.

proof (Mai90; KMM91; KTU90a) 2

Theorem 11.3 (Complexity of type inference with polymorphic recursion)
Typability with polymorphic recursion is (recursively) undecidable.

18

proof Reduction of semi-unification to type inference with polymorphic
recursion (Hen89; KTU89), undecidability of semi-unification (KTU90b) 2

Theorem 11.4 (Complexity of type inference with atomic subtypings)
Typability with (certain, fixed) atomic type containments is PSPACE-

complete.

proof (LM92; Fre02) 2

Theorem 11.5 (Complexity of type inference for System F) Typability in
System F (Girard/Reynolds Calculus) is undecidable.

proof (Wel93) 2

Most of the lower bounds can be strengthened using the technique of
type-invariant simulation (Hen90a; Hen90b; HM94; Urz97). It consists of
identifying reduction steps that not only have a subject reduction property,
but also the converse; that is where the reduct has a type if and only if the
reductum has that type and then showing how many steps of an arbitrary
Turing Machine can be encoded using those reduction steps.

In this fashion inseparability results can be obtained, which roughly say
not only that a particular type system has a particular complexity, but no
type system that contains it can have a lower complexity.

• Any sound type system that contains simple typability is P-hard.

• Any sound type system that contains ML-typability or rank-2 bounded
System F typability is DEXPTIME-hard (Hen90a; Hen90b; HM94)

• Any sound type system that contains rank-1 of System Fω is undecid-
able (Urz97).

Interestingly, it is not known whether or not there exists a decidable sound
type system that contains all of System F .

12 Constraint-based polymorphic type inference

Historically, Milner introduced Algorithms W and J (Mil78) for ML-type
inference, which execute by structurally building a principal type for an
expression from the the principal types of their subexpressions. Nowadays,
constraint-solving techniques are increasinglhy used. They consist of the
following steps:

19

1. Find a properly syntax-oriented version of the type system where there
is precisely one typing rule for each construct that derives the type for
the whole construct from the types of its (immediate) subexpressions.

2. For each such rule characterize the relation of the types of the subex-
pressions and the whole expression that must be satisfied by con-
straints between them.

3. For a given program, parse it, annotate the subexpressions with unique
type variables (the “unknowns”) and collect all constraints according
to the inference rules.

4. Solve the constraints; that is find a substitution for the type variables
that satisfies all the constraints.

Note that the separation of constraint generation and constraint solv-
ing reflects a separation of concerns: The constraints and their generation
depend on the input program’s syntax, but the constraint solution is inde-
pendent of where the constraints come from.

Let us execute these steps for ML-style type inference. The type system
is as follows:

(VAR) A{x : τ} ` x : τ

(ABSTR)
A{x : τ} ` e : τ ′

A ` λx.e : τ → τ ′

(APPL)
A ` e : τ → τ ′ A ` e′ : τ

A ` ee′ : τ ′

(FIX-M)
A{x : τ} ` e′ : τ
A ` fix x.e′ : τ

(LET) A ` e′ : σ′ A{x : σ′} ` e : σ
A ` let x = e′ in e : σ

(GEN) A ` e : σ
A ` e : ∀α.σ

if α not free in A

(INST)
A ` e : ∀α.σ
A ` e : σ[τ/α]

20

Note that it is syntax-oriented (the premises contain only expressions
that occur in the corresponding consequents), but not properly syntax-
oriented: The (GEN) and (INST) rules do not change the subject expression
e.

12.1 Properly syntax-oriented type system

An equivalent properly syntax-oriented version is as follows. For convenience
we retain which construct gives rise to which variable binding and we writing
type assumptions on variables as a sequence reflecting the scoping in the
program (the rightmost binding represents the innermost scope).

(VAR-M) A, λx : τ,A′ ` x : τ

(VAR-P) A, let x : σ,A′ ` x : τ (σ � τ)

(VAR-F) A,fix x : τ,A′ ` x : τ

(ABSTR)
A, λx : τ} ` e : τ ′

A ` λx.e : τ → τ ′

(APPL)
A ` e : τ → τ ′ A ` e′ : τ

A ` ee′ : τ ′

(FIX-M)
A{x : τ} ` e′ : τ
A ` fix x.e′ : τ

(LET)
A ` e′ : τ ′ A{let x : σ′} ` e : τ

A ` let x = e′ in e : τ

(
σ′ = ∀~α.τ ′ where
~α = FTV (τ ′)− FTV (A)

)

Here a σ � τ means that τ must be a substitution instance of σ: σ � τ
if and only if σ = ∀~α.τ ′ and τ = S(τ ′) where domain S ⊆ ~α. E.g., ∀α.α →
α � int→ int.

FTV (τ ′) and FTV (A) denote the set of free type variables ocurring in
τ ′ and in A, respectively. A′ in the (VAR-x) rules must not contain a type
assumption for x.

12.2 Constraint generation

By renaming all types in the inference rules to be unique type variables we
arrive at the following constraint formulation:

21

(VAR-M) A, λx : αx, A′ ` x : α′x (αx = α′x)

(VAR-P) A, let x : αx, A′ ` x : α′x (αx � α′x)

(VAR-F) A,fix x : αx, A′ ` x : α′x (αx = α′x)

((ABSTR)
A, λx : αx ` e : αe
A ` λx.e : αλx.e

(αλx.e = αx → αe)

(APPL) A ` e : αe A ` e′ : αe′
A ` ee′ : αee′

(αe = αee′ → αe′)

(FIX-M)
A,fix x : αx ` e′ : αe′
A ` fix x.e′ : αfix x.e′

(αx = αe′ ∧ αx = αfix x.e′)

(LET)
A ` e′ : αe′ A, let x : αx ` e : αe
A ` let x = e′ in e : αlet x=e′ in e

(
αx = Close(αe′ , A)∧
αe = αlet x=e′ in e

)

To satisfy the constraint αx = Close(αe′ , A) a substitution must satisfy
S(αx) = ∀~β.S(αe′) where ~β = FTV (S(αe′))− FTV (S(A)).

12.3 Quantifier-free constraints

The occurrence of Close in a constraint is awkward. In Algorithm W style
algorithms they are avoided by interleaving constraint generation and con-
straint solving: When processing a let -construct the constraints generated
for it are solved and the Close-operation is performed on the result type
of e′ instead of a generating a formal constraint for it. (Indeed in Algo-
rithm W this immediate solving is done for each construct, not just for
let -expressions.)

Close can be avoided in a different fashion (Hen88; Hen93), without
requiring eager solving based on the following observations. Consider the
rule for let .

• A type scheme ∀~α.τ ′ consists of a simple type (τ ′) and an explicit

22

specification (~α) of which type variables in τ are generic (can be in-
stantiated). The same information can be represented by τ together
with the type variables that are nongeneric (must not be instantiated).

• The nongeneric type variables are exactly those that occur free in A,
the bindings in whose scope the let -expression occurs.

• The nongeneric type variables are exactly those that occur in λ- and
fix -bindings in A.

So all we need to do is associate a let-bound variable with its unquantified
simple type and remember to prevent instantiation of the type variables in
λ- and fix -bindings containing the let -binding.

(VAR-M) A, λx : αx, A′ ` x : α′x (αx = α′x)

(VAR-P) A, letx : αx, A′ ` x : α′x

(
(αx, ~β) v (α′x, ~β)
where ~β = LTV (A)

)

(VAR-F) A,fix x : αx, A′ ` x : α′x (αx = α′x)

((ABSTR)
A, λx : αx ` e : αe
A ` λx.e : αλx.e

(αλx.e = αx → αe)

(APPL) A ` e : αe A ` e′ : αe′
A ` ee′ : αee′

(αe = αee′ → αe′)

(FIX-M)
A,fix x : αx ` e′ : αe′
A ` fix x.e′ : αfix x.e′

(αx = αe′ ∧ αx = αfix x.e′)

(LET)
A ` e′ : αe′ A, let x : αx ` e : αe
A ` let x = e′ in e : αlet x=e′ in e

(
αx = αe′∧
αe = αlet x=e′ in e

)

Here LTV (A) denotes the sequence of types (actually type variables)
bound to the λ- and fix -bindings in A. E.g., LTV (λx : αx, let y : αy,fix z :
αz) = (αx, αz).

23

The constraint (αx, ~β) v (α′x, ~β) is a semi-unification constraint (Hen88):
A substitution S satisfies it if there existsR such that S(αx, ~β) = R(S(α′x, ~β)).
Note that associating ~β with both αx and α′x ensures that R is the identity
on all type variables that occur in S(~β). These are the nongeneric variables
in since they occur free in λ- and fix -bindings in A.

Exercise 10 The above system is equivalent to a system with monomorphic
recursion (FIX-M). Change the constraint-based inference systems above
include polymorphic excursion (FIX-P). 2

References

[CF58] H. Curry and R. Feys. Combinatory Logic, volume I. North-
Holland, 1958.

[CHS72] H. Curry, J. Hindley, and J. Seldin. Combinatory Logic, volume II
of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1972.

[Cur69] H. Curry. Modified basic functionality in combinatory logic. Di-
alectica, 23:83–92, 1969.

[Dam84] L. Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, 1984. Technical Report CST-33-
85 (1985).

[DKM84] C. Dwork, P. Kanellakis, and J. Mitchell. On the sequential
nature of unification. J. Logic Programming, 1:35–50, 1984.

[DM82] L. Damas and R. Milner. Principal type schemes for functional
programs. In Proc. 9th Annual ACM Symp. on Principles of
Programming Languages, pages 207–212, January 1982.

[Fre02] Alexandre Frey. Satisfying subtype inequalities in polynomial
space. Theoretical Computer Science, 277(1-2):105–117, April
2002.

[Gir71] J. Girard. Une extension de l’interpretation de Godel a l’analyse,
et son application a l’elimination des coupures dans l’analyse et
la theorie des types. In 2nd Scandinavian Logic Symp., pages
63–92, 1971.

24

[GLT89] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 1989.

[Gom91] C. Gomard. A self-applicable partial evaluator for the lambda
calculus: Correctness and pragmatics. Transactions on Program-
ming Languages and Systems, 1991. To appear in TOPLAS spe-
cial issue with selected papers from IEEE Computer Society 1990
International Conference on Computer Languages.

[Hen88] Fritz Henglein. Type inference and semi-unification. In LFP ’88:
Proceedings of the 1988 ACM conference on LISP and functional
programming, pages 184–197, New York, NY, USA, July 1988.
ACM.

[Hen89] Fritz Henglein. Polymorphic Type Inference and Semi-
Unification. PhD thesis, Rutgers University, April 1989. Avail-
able as NYU Technical Report 443, May 1989, from New York
University, Courant Institute of Mathematical Sciences, Depart-
ment of Computer Science, 251 Mercer St., New York, N.Y.
10012, USA.

[Hen90a] Fritz Henglein. A lower bound for full polymorphic type infer-
ence: Girard-Reynolds typability is DEXPTIME-hard. Ruu-cs-
90-14, Utrecht University, April 1990.

[Hen90b] Fritz Henglein. A simplified proof of DEXPTIME-completeness
of ML typing. Manuscript, March 1990.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 15(2):253–289, April 1993.

[Hin69] R. Hindley. The principal type-scheme of an object in combina-
tory logic. Trans. Amer. Math. Soc., 146:29–60, December 1969.

[Hin83] R. Hindley. The completeness theorem for typing lambda-terms.
Theoretical Computer Science, 22:1–17, 1983.

[HM94] Fritz Henglein and Harry Mairson. The complexity of type infer-
ence for higher-order typed lambda calculi. Journal of Functional
Programming (JFP), 4(4):435–477, October 1994.

25

[KM89] T. Kuo and P. Mishra. Strictness analysis: A new perspective
based on type inference. In Proc. Functional Programming Lan-
guages and Computer Architecture (FPCA), London, England,
pages 260–272. ACM Press, September 1989.

[KMM91] P. Kanellakis, H. Mairson, and J. Mitchell. Unification and ML
type reconstruction. In J.-L. Lassez and G. Plotkin, editors,
Computational Logic — Essays in Honor of Alan Robinson. MIT
Press, 1991.

[KTU89] A. Kfoury, J. Tiuryn, and P. Urzyczyn. Computational conse-
quences and partial solutions of a generalized unification prob-
lem. In Proc. 4th IEEE Symposium on Logic in Computer Science
(LICS), June 1989.

[KTU90a] A. Kfoury, J. Tiuryn, and P. Urzyczyn. ML typability is
DEXPTIME-complete. In Proc. 15th Coll. on Trees in Algebra
and Programming (CAAP), Copenhagen, Denmark, pages 206–
220. Springer, May 1990. Lecture Notes in Computer Science,
Vol. 431.

[KTU90b] A. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of
the semi-unification problem. In Proc. 22nd Annual ACM Symp.
on Theory of Computation (STOC), Baltimore, Maryland, pages
468–476, May 1990.

[LM92] P. Lincoln and J. Mitchell. Algorithmic aspects of type inference
with subtypes. In Proc. 19th Annual ACM SIGPLAN–SIGACT
Symposium on Principles of Programmin Languages (POPL), Al-
buquerque, New Mexico, pages 293–304. ACM Press, January
1992.

[Mai90] H. Mairson. Deciding ML typability is complete for deterministic
exponential time. In Proc. 17th ACM Symp. on Principles of
Programming Languages (POPL). ACM, January 1990.

[Mil78] R. Milner. A theory of type polymorphism in programming. J.
Computer and System Sciences, 17:348–375, 1978.

[Mit91] J. Mitchell. Type inference with simple subtypes. J. Functional
Programming, 1(3):245–285, July 1991.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive definitions.
In Proc. 6th Int. Conf. on Programming, LNCS 167, 1984.

26

[PW78] M. Paterson and M. Wegman. Linear unification. J. Computer
and System Sciences, 16:158–167, 1978.

[RDR88] S. Ronchi Della Rocca. Principal type scheme and unification
for intersection type discipline. Theoretical Computer Science,
59:181–209, 1988.

[Rey83] J. Reynolds. Types, abstraction and parametric polymorphism.
Information Processing, pages 513–523, 1983.

[Tha88] S. Thatte. Type inference with partial types. In Proc. Int’l Coll.
on Automata, Languages and Programming (ICALP), pages 615–
629, 1988. Lecture Notes in Computer Science.

[Tof92] M. Tofte. Principal signatures for higher-order program mod-
ules. In Proc. 19th Annual ACM SIGPLAN–SIGACT Sympo-
sium on Principles of Programming Languages (POPL), Albu-
querque, New Mexico, pages 189–199. ACM Press, January 1992.

[Urz97] Pawel Urzyczyn. Type reconstruction in fω. Mathematical Struc-
tures in Computer Science (MSCS), 7:329–358, 1997.

[Wad89] P. Wadler. Theorems for free! In Proc. Functional Program-
ming Languages and Computer Architecture (FPCA), London,
England, pages 347–359. ACM Press, September 1989.

[Wan87] M. Wand. A simple algorithm and proof for type inference. Fun-
damenta Informaticae, X:115–122, 1987.

[Wel93] J.B. Wells. Typability and type checking in the second-order
λ-calculus are equivalent and undecidable. Preliminary Draft,
August 1993.

27

